PAGE  
1

August 2007

Tracking Global Factor Inputs, Factor Earnings, and Emissions Associated with Consumption in a World Modeling Framework

by

Faye Duchin
Department of Economics
Rensselaer Polytechnic Institute

Stephen H. Levine
Department of Civil and Environmental Engineering
Tufts University

Abstract.  This paper presents a new approach for estimating the amount of carbon embodied in a product consumed in a given economy, taking account of where the inputs to that product were extracted and processed all along the supply chain.  The method is generalized to apply to all factor inputs, including materials and energy, as well as pollutant emissions and can track not only the flows of factors and goods as imports and exports along the global supply chain but also the payments for these inputs made by ultimate consumers along the global value chain.  The new method makes use of absorbing Markov chains that track downstream and upstream flows.  These chains are first described in terms of the mathematics of a one-region input-output model and then generalized to the global framework of a multiregional world economy.  The paper also describes the standard way of solving this problem, which we call the Big A method, and indicates the main advantages of the Markov chain approach, namely that it is implemented without loss of information using a more compact database and can address a wider range of questions, especially ones related to the recycling of materials.  Finally, the paper discusses the parameter requirements distinguishing this type of ex-post analysis from model-based exploration of alternative scenarios about the future and makes the case for combining the two.
C63, C67, F18, Q56, Q57

August 2007
Tracking Global Factor Inputs, Factor Earnings, and Emissions Associated with Consumption in a World Modeling Framework

by

Faye Duchin
Department of Economics
Rensselaer Polytechnic Institute

Stephen H. Levine
Department of Civil and Environmental Engineering
Tufts University

1. Introduction

Economists often portray an economy as a circular money flow, where producers pay salaries to workers who in turn use their incomes to purchase consumption goods and services from the producers.   Goods are assumed to move around the circle in the opposite direction from the money flows.  While the circular flow concept has been used to describe individual economies, it is equally applicable to the more complex system of the world economy.  This image accurately conveys the duality between the physical flows and the money flows that constitute any economy.
However, while the money flows are entirely contained within the economic system, this is not true of the physical flows.  Production requires inputs of resources that are extracted from the environment; and during both production and consumption, wastes are discharged into the environment.  While some discharges do re-enter the production process, reuse of products and recycling of materials are outside the scope of this paper.  Thus, a typical ton of iron ore will follow a path through the system, ending up embodied in a range of consumer items, including household appliances and vehicles.  Starting from the other end, a typical family car traces its ultimate roots to not only the iron required in the course of its fabrication but also other materials and energy as well as labor and capital and is associated also with the carbon discharged at each stage along the way.  This paper presents a method for quantifying where that ton of ore ends up, where that car came from, and where the carbon was emitted.  It also tracks the associated money flows from consumption outlays to factor payments.  The approach taken describes these paths through an economy as absorbing Markov chains and shows, both symbolically and using a numerical example, how they are implemented using input-output data.  This framework supplements the mathematics of input-output modeling and is a fully general treatment for associating all factor inputs and all wastes generated with specific components of final consumption, in both physical quantities and money values.
The ability to track the supply chain for consumer goods has been recognized as vital for climate change policy.  A party to the Kyoto Protocol now commits to targets for the carbon emitted on its territory.  A mechanism considered both more effective for reducing global emissions and fairer than imposing “producer responsibility” is to target emissions embodied in a country’s consumption, or its “consumer responsibility.”  To calculate the latter quantity, it must be possible to compute the amount of carbon, and where in the world it is emitted, associated with a given final demand.  Over the past several years a literature has accumulated on the use of input-output models to calculate a country’s carbon emissions under both consumer responsibility and producer responsibility.  The carbon associated with production is relatively straightforward to estimate, but quantifying the carbon embodied in consumption is more problematic because it involves identifying the countries of origin for imports and the arrangements surrounding production in these countries, including their own imports, then the arrangements surrounding production in the countries from which they in turn import, and so on.  Techniques have been developed for estimating the total carbon embodiment for given countries using multi-regional input-output analyses (see Lenzen, Pade, and Munksgaard 2004; Peters and Hertwich, forthcoming).  Further simplifications permit estimates of embodied carbon, including for imports, based on data for only the one or several given countries (see, for example, Peters and Hertwich, 2006).  The main objective of these studies has been to compare, for individual countries, the carbon embodied in their consumption and in their production.  
This paper develops path-based methods based on Markov chain analysis to address a related family of questions for all countries simultaneously and for all factor inputs and pollutant discharges, while also accounting for direct and indirect imports.  Other kinds of path analysis have been applied to decomposing input-output matrices and multipliers (Defourny and Thorbecke 1984; Khan and Thorbecke 1989; Sonis and Hewings, 1998; Peters and Hertwich 2006; Lenzen 2007), but none has addressed the question posed here or made use of the absorbing Markov chains.  Bailey et al. (2004 a,b) used  environ analysis, a method drawing on input-output and to a lesser degree Markov chain analysis and previously applied to ecosystems (Patten and Finn, 1979),  to perform path analysis, ultimately focusing on system wide measures such as average path length in the entire system, system throughput, and measures of recycling.  Markov chains have been used in the analysis of energy and biomass flows in ecosystems, including determining a measure of recycling (Barber, 1976).  We know of one pioneering effort to formally use Markov chains to study the recycling of materials in industrial systems (Yamada et al. 2006; Matsuno et al. 2007).  The Bailey, Yamada, and Matsuno papers are narrowly focused on the flows of specific factors, such as aluminum, and not on their embodiment in products and consumption goods.  They do not address the broader question of relating production to consumption as do many input-output models.  This paper, by contrast, addresses just these broader issues and in doing so provides a bridge between an input-output analysis of the entire economy and a promising approach to studying recycling.  
Within the framework of input-output models, the Leontief inverse matrix plays a privileged role.  This is the matrix (I – A)-1 that is the defining feature of the basic static input-output model, 



(I – A)x = y  or  x =  (I – A)-1y,




(1-1)
where y is a vector of final demand, A is a matrix of input-output coefficients, and x is the vector of output required to satisfy y.  The power of the Leontief inverse is that it captures not only the direct but also the indirect input requirements.  Thus, if F is the matrix of factor requirements per unit of output, the Leontief inverse makes it possible to determine the vector of factor inputs, (, required directly and indirectly to satisfy y:



( = Fx = F(I – A)-1y.






(1-2)
If we substitute for F the matrix C measuring pollution generated, or emissions, per unit of output, then c = Cx quantifies emissions.  (Note that this is the standard representation for emissions in an input-output framework.  While in fact F and C should be conceptually related, this is a workable first approximation.)   To simplify the notation, we use F to represent either factor inputs or emissions.  The paths joining final demand and factor inputs (or emissions), represented both in physical units and in money values, are the subject of this paper.  If goods prices are applied to y and factor prices to (, the associated paths of money flows implied by Eq. (1-2), i.e., those between factor incomes (or value added) and outlays for final demand, can also be tracked.  These paths can be said to describe the supply chain and the value chain, respectively.  
Some specific instances of the general question to be addressed are:
· How much carbon is emitted in other economies to satisfy consumer demand in the US?   Which countries’ consumption accounts for the carbon emitted in China?  How much carbon is associated with the transport of goods?
· How much Middle Eastern oil is associated directly and indirectly with consumption in the US?  How much of the money outlays for total consumption in the US goes to paying royalties on this oil?

· What are the factor input requirements for refrigerators sold in the EU, and where do the factors originate?  Of the money paid for these refrigerators in the EU, where does it end up in factor payments?

· How much Chinese labor is embodied in consumption of specific other countries?  What portion of labor income in China is paid by consumers in these other countries?

If one writes the equivalent of Eq. (1-2) for the world economy and analyzes the chain beginning with each factor in each region and the chain ending in an element in each region’s final demand, one can solve this problem for all regions simultaneously.  It is standard to do this using what we will define as the “Big A” method.  However, it will be seen that there are advantages for formulating the problem instead as an absorbing Markov chain.  

The remainder of this paper is organized as follows.  In Section 2, we define downstream flows and upstream flows in the supply chain and the value chain for each product, taking account of the webs of interdependence among sectors; these concepts are formalized and quantified in subsequent sections.  Absorbing Markov chains that track downstream and upstream flows in a single economy are introduced in Section 3, where they are described in relation to the mathematics of the one-region input-output model.  Section 4 moves on to a global framework and presents the algorithms for a similar analysis of the downstream and upstream flows in a multiregional world economy.  A numerical example for tracking the supply chain and value chain, both downstream and upstream, in the global framework is provided in Section 5.  Section 6 describes the standard way of solving the problem, namely the Big A method, and indicates the main advantages of the Markov chain approach.  The fundamental distinction between this analysis of one given outcome and a model for analyzing alternative scenarios is discussed in Section 7, which describes a global multiregional model that can provide the inputs for the kind of analysis addressed in this paper.  The final section provides conclusions, and an appendix elaborates on some of the mathematical analysis.    
2.  Downstream Flows and Upstream Flows in Production Chains
The supply chain for a particular good can be said to begin with the extraction of raw materials and mobilization of labor and other factors of production, continues through various stages of processing and fabrication, and ends with delivery of the finished good to consumers.  From any point midstream in the chain, product output flows downstream in the direction of the consumer, while the activities considered upstream are those producing intermediate inputs and ultimately the factor inputs.  A producer is concerned with securing upstream suppliers and downstream customers. 

From the point of view not of individual producers but of the economy as a whole, the terms have a similar significance: we are concerned with tracking consumer goods upstream to the factor inputs required for their production and with tracking factors of production downstream to the consumer goods in which they are eventually embodied.  While individual producers are concerned mainly with securing their own inputs, in fact factors of production and other inputs are also required at every intermediate stage in the upstream production chain.  An input-output framework is needed to describe and quantify all of the indirect relationships that join the chains in a web-like structure.
In the global context we will be interested in tracking a good consumed in one economy upstream to the factor inputs that were utilized in producing it in the same and other economies.  We will also wish to track a factor input extracted and used in a given economy downstream to the consumption goods in the same and other economies in which it is embedded, both directly and indirectly.
Money flows in the opposite direction from the material goods.  Outlays by consumers for a particular good in one country flow upstream to the owners of the constituent factors of production in the same and other economies, such that the total outlay of all consumers purchasing a given product is equal to the incomes received by the owners of the factors embodied in the product.  Moving in the other direction, the earnings of a particular factor in a given economy are paid by all downstream users of the factor and ultimately by consumers of the goods in which the factor is embedded.  
In the case where we are tracking not factors of production but wastes like carbon emissions, this waste discharge may or may not be priced (e.g., taxed).  In the event, for example, of a carbon tax, the logic of the last paragraph holds.  This means that the outlays of consumers can be traced upstream to factor payments and carbon taxes associated with all or part of a final bill of goods, and the earnings from a carbon tax can be traced downstream to all the ultimate consumers whose outlays contribute to paying it.  If the carbon emissions are not taxed, they simply have a zero price and can be handled formally like any priced factor or waste.
3. The Input-Output Model and Absorbing Markov Chains  
Before considering the multiregional global framework, we describe the simpler context of a one-region economy with n sectors, each producing a characteristic good, and k factors of production.  All variables and coefficients are measured in relevant physical units, such as tons of steel or kWh of electricity per ton of steel.  Money values are, of course, a special case of physical unit.  Our examples are in general physical units, and unit prices are subsequently introduced explicitly into the analysis.  
In this section factors are associated with final demand first using the familiar input-output equations.  Then we introduce an absorbing Markov chain model and solve the same problem. Markov chains can be used to model systems where the selection of the next state on a path is a function only of the present state and the transition probabilities associated with the branches available at the present state. In an economic system different factors, and different units of a given factor, take different paths through the system.  Thus a proportion of each factor is used directly in sector 1, another proportion in sector 2, and so on.  These proportions, of course, add to 1.0, and it is this property – that a factor (or an intermediate good) is entirely distributed among a clearly defined set of direct uses -- that allows us to use a Markov chain model for this system. We interpret the Markovian transition probabilities as proportions of factors and goods, and it is in terms of these proportions that we will work. The section ends with a formal description of the Markov model and its relationship to the input-output model in the case of a one-region system.  

The Input-Output Model

Starting from Eqs. (1-1) and (1-2), we distinguish the requirements for a particular factor, say φi, corresponding to individual components of final demand by replacing the vector y by the diagonal matrix 
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.   If we call the resulting matrix Φ, then 




Φ = F(I – A)-1
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ˆ
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(3-1)
where each row of the k x n matrix Φ quantifies the distribution of one factor among the n components of final demand, while the columns describe the requirements of all factors to satisfy each component of final demand.  For a numerical example, consider an economy described by A, F, and y:

[image: image3.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

3

.

0

2

.

0

3

.

0

2

.

0

2

.

0

2

.

0

1

.

0

3

.

0

2

.

0

A




[image: image4.wmf]ú

û

ù

ê

ë

é

=

3

.

0

3

.

0

2

.

0

4

.

0

2

.

0

3

.

0

F




[image: image5.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

9

8

5

.

3

y


Then one can determine 
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Reading across the first row of the Φ matrix shows the ways in which the required 18.5 units of the first factor are distributed: 3.3 units are required to deliver the first good to consumers, 6.7 to deliver the second good, and 8.5 to deliver the third good.  The first column of the same matrix shows that delivering the first good to consumers requires 3.3 units of the first factor and 2.6 units of the second factor.  Thus the Φ matrix provides the solution to our problem.  

The Absorbing Markov Chain Model

Next consider an analysis based on representing this economic system as a Markov chain. The system structure of our example economy is shown in Figure 3-1, where the network nodes represent the states of the system. The nodes labeled F refer to factors of production, X to outputs, and Y to final demands.
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Figure 3-1: Flows of Goods and Factors

in a Three-Sector, Two-Factor Economy
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The objective is to follow each unit of a factor of production as it progresses through the system shown in Figure 3-1, eventually ending by satisfying final demand.  Because all utilized factors eventually end up embedded in one or more components of final demand, the state of being part of final demand is referred to as an absorbing state and the Markov chain is referred to as an absorbing chain.  (We remind the reader that wastes and recycling are not considered in this paper.)  The other states, corresponding to factors and goods, are referred to as transient states. 

Since the Markov chain model quantifies each flow out of a state as a proportion of the total flow out of that state, we need to determine exactly what proportion of factor r is used directly by sector j.  The number of units of factor r used by sector j is φrj, and the total use of factor r is φr = φr1 + φr2 + φr3, so the proportion in question will be:   





f*rj =  φrj/φr





(3-2)





This is the rjth term in the k x n matrix F*.   

We now define so-called direct transition matrices of the form Pd(a,b), where a and b are vectors representing two states, and the ijth entry of Pd(a,b) is the portion of flow out of state ai going directly to state bj.  By this definition, Pd(φ,x) = F*, the matrix of proportions of direct flows of factors φ to sectoral outputs x.  

Next we consider the proportional flows from the total supply of products, x, to final demand, y, taking into account that an intermediate good can flow from one sector to another any number of times before being absorbed in final demand.  In the absence of imports, the domestic supply is simply total domestic output, x.  The proportion of supply that flows from the ith sector directly to the ith component of final demand is simply the ratio yi/xi, and no output flows directly from the ith sector to any other component of final demand; that is, the latter proportion is 0.  In matrix form these proportions are elements of the n x n diagonal matrix, Pd(x,y) = 
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-1).  
Next we examine the intermediate use of the total supply of output of each good.  The proportion of total supply, or output, flowing directly from sector i to sector j is a*ij =  xij/xi. This is the ijth term in the n x n matrix A*, where of course A* = Pd(x,x) .  After this first round of direct flows among sectors, the intermediate goods may be delivered either to final demand or to other sectors, and so on for all subsequent rounds.  The matrix of proportional flows from x to y, including both direct and indirect flows, is therefore

P(x,y) = Pd(x,y) + Pd(x,x)Pd(x,y) + Pd(x,x)Pd(x,x)Pd(x,y) + ∙ ∙ ∙
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(3-3)

The development of Eq. (3-3) is based on the same logic as the representation of the Leontief inverse (I – A)-1 as the matrix power series (I + A + A2 + ∙ ∙ ∙), and the relation between A* and A is spelled out below.  Combining Eqs. (3-2) and (3-3) leads to the matrix of overall proportional flows from factors to final demand




P(φ,y) = Pd(φ, x)P(x,y)

= F*(I – A*)-1 
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(3-4)

The rows of this matrix distribute proportions of each factor over all components of final demand; it is readily seen that each row total equals 1.0 since P(φ,y) is the product of two matrices that both have this property.   Finally, to calculate the actual amounts of factors, we calculate the matrix 

Θ = 
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(3-5)

Evaluating Eq. (3-5), we get

Pd(φ,x) =
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.
It should come as no surprise that this Θ = Φ, the result we obtained by the familiar input-output method. 
It should be pointed out that we can express Eq. (3-5) in terms of the input-output matrices A and F by recognizing that f*rj = frj(xj/φr) and a*ij = aij(xj/xi). Therefore






F* = 
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(3-6b)

where X is the intersectoral flow matrix.

The Formal Markov Chain Model

The familiar input-output manipulations on a database measured in a common unit (namely money values or mass) are a special case of the more general Markov chain analysis. When the flows are measured in mixed units, traditional input-output models are not Markov chains. In this case the input-output model can be solved provided that the A matrix satisfies the Simon-Hawkins conditions, meaning that the economy does not operate at a loss. The Markov chain model in mixed units can be analyzed even for an economy that depends upon subsidies.

We conclude this section by presenting a formal absorbing Markov chain analysis of this system to demonstrate its additional properties.  In Section 4, we will exploit the greater generality of the Markov method to link factors to final demand in the more complex system of the global multiregional economy.

In a Markov chain the system is represented by a number of states and the one-step transition probabilities, what we are referring to as the direct proportional flows, from one state to another.  These direct transition probabilities are represented for the entire system in what is called the systemwide transition matrix, denoted as M. Thus mij is the probability that state i will transition in the next step to state j. In an absorbing Markov chain analysis, the states are partitioned into absorbing states and transient states, and the transition matrix is put into canonical form by ordering the states starting with the absorbing states first. Then M can be partitioned as follows,
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(3-7)

The absorbing states have the property that once entered they can never be exited. Thus if state i is an absorbing state mii = 1.0 (since 100% of the flow remains in the same state) and mij = 0 for j ≠ i.  The identity matrix I and the 0 matrix, the latter being rectangular, reflect these properties.  The direct proportional flows among the transient states are represented by the matrix designated Q and the direct proportional flows from transient to absorbing states by the matrix designated R.  
The absorbing chain is said to have a fundamental matrix (Kemeny and Snell, 1976), defined as





N = I + Q + Q2 + ∙ ∙ ∙

 



    = (I – Q)-1.





(3-8)

This matrix contains information about the average number of times a unit of a factor of production or a sectoral output passes through each transient state before reaching an absorbing state. Since R contains the direct proportional flows from those transient states to the absorbing states, the matrix





B = NR





(3-9)

contains the proportion of the output of each transient state that ultimately reaches each absorbing state, either directly or indirectly.  The B matrix is therefore what we sought in the analysis and the numerical example above.  

In our example the final demands (y) correspond to the absorbing states while the transient states are the factors (φ) and the sectoral outputs (x).  Noting that, and making use of the direct transition matrix notation, Pd(y,y) = I, the partitioned M matrix is

[image: image40.emf]























* 1

*

A 0 y x

F 0 0

0 0 I

ˆ ˆ

(3-10)























x) (x, P 0 y) (x, P

x (φ P 0 0

0 0 y) (y, P

M

d d

d

d

) ,


Therefore, 


[image: image41.wmf]ú

û

ù

ê

ë

é

=

*

*

A

0

F

0

Q







(3-11)

and the fundamental matrix is
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(3-12)

The matrices in the first row and column of N correspond to the factors while the matrices in the second row and column correspond to the sectoral outputs.  Finally,  
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and
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(3-14)




The matrix constituting the first block of B corresponds to the proportional flows from the factors to final demand. We will define this as 




Bφ = F*(I – A*)-1
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The second block matrix of B corresponds to the proportional flows from the sectors to the final demands and is defined as




Bx = (I – A*)-1
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(3-16)

Bφ is the matrix of interest, and we see that in fact it is exactly what we previously labeled P(φ,y).  The other component of B, Bx, corresponds to P(x,y).

In this section we have shown how the absorbing Markov chain analysis replicates the results of the more traditional input-output analysis. However, by virtue of Eq. (3-12) being a fundamental matrix of an absorbing chain, we can derive additional results describing the paths taken by the factors as they flow through the system. As one example, the row sums in N corresponding to the factors are the average path lengths taken by those factors before being absorbed as final demand. Similarly, the row sums corresponding to the sector outputs are the average path lengths taken by those outputs. In the form presented in Eq. (3-12) this is an average across all the final demands, but the fundamental matrix can also be modified to describe the average path length until absorption by a specific component of final demand, that is, a specific absorbing state.  Note that while (I – A*) -1 has the property that its row sums are average path lengths, the same is not true for the row sums (or the column sums when flows are measured in physical units) of (I – A) -1. 
4. The Global Supply and Value Chains as Absorbing Markov Chains 
In this section we generalize the concepts presented in the one-region model of Section 3 in order to apply them to a world economy consisting of m regions, each described in terms of n sectors and k factors of production.  In this global framework, we explicitly describe the role of imports and exports in each region’s economy.  The inter-regional transport of trade flows itself calls for factor inputs and generates emissions, and these will be explicitly addressed.  Note that this transport is required per unit of trade flow between 2 specific regions, not per unit of one region’s output, so its representation requires special treatment in an input-output framework.  We treat the industries providing international transport as sectors in each regional economy and for now represent the demand for their output as part of the final demand of importing regions.  Later the treatment of this distinctive sector will be further elaborated. 

Figure 4-1 below is a network model illustrating the flows of goods and services, measured in physical units, in a 3-region system. 
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in 3-Region Economic System
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Consumer demand and inter-regional transport demand are combined into one vector, u, and referred as final demand. The u’s and e’s are n-element vectors, one element for each sector, and the φ’s are k-element vectors, one for each factor.
The nodes representing the regions are more complex than the others because they involve the economic structure characterized by the matrices of intermediate inputs and of factors of production, A and F, considered in Section 3.  Figure 4-2 illustrates the internal structure of the node for region 1; the nodes for regions 2 and 3 are similarly organized.  The intermediate and total output vectors are w and x, respectively, while z is the vector of total domestic supply including both domestic production and imports.
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As in the previous section we will analyze the system in Figure 4-1 as an absorbing Markov chain, with the final demand nodes treated as absorbing states. Since each node in Figure 4-1 represents a set of nodes, one for each economic sector or factor of production, the flows associated with the branches are all vectors. We first develop the direct transition matrices, Pd(a,b), and then incorporate them into a formal absorbing chain model.   
Paralleling the description in Section 3, we begin with the flow in region g from φg to xg. The proportion of the rth factor flowing to the jth sector is 
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(4-1)

This is the rjth term in the k x n matrix F*g  = Pd(φg,xg).  The proportion of the ith sector’s intermediate output flowing directly to the jth sector is xgij/wgi, where wgi is the total intermediate use of the output of sector i.  This is the ijth term of the n x n matrix 

Pd(wg,xg) = 
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(4-2)

where Xg is the intersectoral flow matrix for region g.

The proportion of xg flowing directly to zg, total domestic supply, is clearly





Pd(xg,zg)  = I,





(4-3)

the n x n identity matrix, since each component of xg is directly and completely incorporated in the corresponding component of zg. The same is true for Pd(ehg,zg) for h ≠ g. The proportion of zg flowing directly to wg is the proportion of each unit of supply of zg that is incorporated into wg, and is therefore





Pd(zg,wg) = 
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(4-4)

The same relationship holds for zg to egh , h ≠ g, as well as zg to ug (recalling that ug = yg + tg).  Flows from region g to region h are represented as  





Pd(zg,zh) = Pd(zg,egh)Pd(egh,zh)
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(4-5)

Finally, 





Pd(zg,xg) = Pd(zg,wg)Pd(wg,xg)






   =  
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where 
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A* is, as in Section 3 (see Eq. (3-6b)), the direct distribution of output to different sectors as a proportion of total domestic supply.  In the multiregional case, domestic supply includes imports as well as domestic output:  
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(4-8)

Nodes 1 – 3, the final demands, contain the 3n absorbing states.  For each of these nodes there is only one branch leaving the node and it returns into the same node. (These branches, not shown in Figure 4-1, are shown in Figure 4-3.)  The matrix of proportions of flow associated with this single branch, Pd(u1,u1), is the n x n identity matrix I.

We now have determined all the matrices required for the absorbing Markov chain.  To put the system in canonical form, the absorbing states (i.e., the final demands), are labeled nodes 1-3; and the transient states are nodes 4 – 12.  We recast the network model in Figure 4-1 as a Markov chain, shown in Figure 4-3. Each region is now represented by two nodes corresponding to the vectors x and z, the latter including imports.
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The canonical form for the matrix of proportions of direct flows of an absorbing chain, as described in Section 3, is shown in Figure 4-4.  For the multiregional system, the dimension of the I matrix is (nm x nm), the 0 matrix is (nm x m(k+2n)), the R matrix is (m(k+2n) x nm), and the Q matrix is (m(k+2n) x m(k+2n)).  Recall that the R matrix describes the direct proportions of flows from the transient states (the φ’s, z’s and x’s) to the absorbing states (the u’s), and the Q matrix describes the direct proportions of flows between the transient states.   All row sums of M equal 1.0: this is evident for the first nm rows, and also holds for the row sums of R plus Q, since R contains the portions of domestic supply of goods (z) distributed directly to final demand and Q contains the portions used as intermediate inputs and the portions exported.
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I – direct proportional flows from between absorbing states (identity matrix)

0 – direct proportional flows from absorbing states to transient states (zero matrix)
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Q – direct proportional flows from transient states to transient states


For our 3-region system the M matrix is shown in Figure 4-5. The first of these matrices is the direct representation of Figure 4-3 and is partitioned in accordance with its canonical form into the I, 0, R and Q matrices, with the last three further partitioned.  The matrix M is sparse: a number of the partitions are 0 matrices, and others are diagonal matrices. 
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Figure 4–5: 3-Region Proportional Flow Matrix in Canonical Form

for the Flow of Goods and Factors


As in Section 3, we wish to determine the absorption matrix B = NR. To exploit the well-defined structure and sparsity of M, we write:
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Then we are able to express B as follows:

B = (I – Q)-1R 
(I – Q)B = R  

B – QB = R. 
Solving for B we obtain:


Bφ – F*Bx = 0,







(4-9a)



Bx  - Bz = 0,  and






(4-9b)



Bz – A*Bx – 
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(4-9c)
This leads to

Bφ = F* (I – A* - 
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(4-10a)

Bx  =  Bz = (I – A* - 
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(4-10b)
We note in Figure 4-5 that A* is a block-diagonal matrix while the submatrix we have called 
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has zeroes in the diagonal blocks.  If we define Ã = A* + 
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, then Ã is the mn x mn matrix with the proportional distributions for regional production matrices down the diagonal and the information on exports in off-diagonal blocks.  We can rewrite the key equations as follows:
Bφ = F* (I – Ã)-1 
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(4-11a)

Bx  =  Bz =  (I – Ã)-1 
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(4-11b)
These equations generalize Eq. (3-15) and (3-16) to the case of multiple regions that trade among themselves.  To calculate the amounts, and not just the proportions, of factors associated with each component of final demand, we construct the augmented vector of multiregional factor use 



φ
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and then, parallel to Eq. (3-5),




Φ =  
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(4-12)

Finally we return to the important fact that factors of production are required, and carbon and other pollutants emitted, in carrying internationally traded goods.  These requirements have been accounted for but combined with consumer demand in the u vector.  We can do this without distortion or loss of information since there is zero consumer demand for the output of the inter-regional transport sectors.  However, as our goal is to associate all factor inputs and pollutant emissions with consumer demand for the goods-producing sectors, it will be necessary to appropriately reallocate them to final demand for the outputs of these other sectors. This can be done by appropriately modifying the Φ matrix using a procedure that will be described and illustrated in the numerical example of Section 5. 

5.  A 3-Region Numerical Example 

In this section we demonstrate the absorbing chain approach through a 3-region example. Each region’s economy is described in terms of four sectors: (1) agriculture, (2) manufacturing, (3) oil extraction, and (4) inter-regional transportation. There are three factors of production: (1) labor, (2) crude oil, and (3) land.  The illustrative data are such that region 1 is a stylized representation of a industrialized economy, region 2 of an agricultural economy, and region 3 of a non-industrialized economy that is well-endowed with oil.  It is assumed that not only the parameters but also the values of all variables are known: the implications of this assumption are the subject of Section 6.  The specifics of the example follow, starting with the matrices of intermediate and factor inputs per unit of output with all quantities, unless otherwise specified, measured in physical units:
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Final demand and output in each region are: 
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The vectors of factor use are:

 φ1 
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Traded goods are transported between regions with the requirements for transport of each unit of imports to region j from region i described by entries in the rows of the matrix Tij (shown below) corresponding to different transport sectors – a single such sector in the example below.  Each entry in that row (the 4th row), measured in ton-kilometers, is the product of the mass of the good transported multiplied by the distance between the origin region and the destination region.  Thus for each unit of agricultural goods imported from region 1 to 2, or region 2 to 1, 0.12 ton-km of inter-regional transport is required.  For heavier manufactured goods, the corresponding figure is 0.5 ton-km.

.
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The trade vectors quantify the flows of goods and services among the three regions:
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The unit prices of goods, which reflect differences in transport costs, are:
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and the per-unit factor prices and scarcity rents are
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respectively.   In this case, there is a scarcity rent only on land in region 2.  When there are no scarcity rents, or when they are presumed to be included in the factor prices, the π vectors alone suffice.  (The reason for including explicit scarcity rents becomes clearer in Section 7, where the World Trade Model is discussed.)
The matrices Bφ, Bx, and Bz are computed as described in Section 4.  The row sums of Bφ are equal to 1.0, except for those rows corresponding to factors that were not utilized,  since each row shows the proportions of flows, both direct and indirect, from a given factor in one region to each component of final demand in all regions.
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The 12 columns of Bφ correspond to the components of the final demand vectors u1, u2, and u3, each with four components: agriculture, manufacturing, oil extraction, and international transportation.  The nine rows correspond to the components of the vectors φ1, φ2, and φ3, each with three components for labor, crude oil, and land.  Thus, the first row shows that 44% of the labor in region 1 (the sum of the first 4 entries) is required to satisfy its own final demand both directly and indirectly.  That means that 56% of the region’s labor is embodied in the consumption goods of the other 2 regions.  Note that in this very aggregated example, regions 1 and 2 extract no crude oil and the oil-rich region uses no land for agricultural production, as reflected by the 3 rows of zeroes in Bφ.  Note also that rows 4 and 6, corresponding to φ21 and φ23, the distribution of its utilized land and labor, are identical because region 2 produces only one output.  The same is true for rows 7 and 8.
Utilizing Eq. (4-12), we can calculate the Φ matrix in physical quantities.  Note that the row sums in Bφ that are 0 correspond to the failure to use specific factors and therefore get multiplied by 0 in this operation:
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Each row of Φ shows how a particular factor in a given region is distributed among all components of final demand in all regions, while each column shows how many units of each factor originating in all regions are required to meet final demand for a specific good in a particular region.  Naturally, the vector of row sums is exactly equal to the vector (.  Columns can in general not be totaled since factors may be measured in different units.   
Now we examine the distribution of income in this multiregional system.  The relevant matrices are determined by multiplying each row of Bφ, and each row of Φ, by  the region-specific factor price, including any scarcity rents, that is, by the relevant component of (πi + ri) for region i; we call the resulting matrices BφW and ΦW:
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Each row sum of BφW is equal to the earnings of one unit of that factor, and the row shows the portion of the unit earnings paid by consumers of each good in each region.  
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Each row total of ΦW shows the total earnings of one factor in each region, and individual entries in the row show the source of the payment in the consumption of a particular final good in some region.  For example, the total of row 1 is 172.7 money units, say thousands of dollars; this means that workers in region 1 earn $172,700, of which $75,800 comes out of consumption outlays in the same region (the sum of the first 4 figures in the row).  Most worker income in region 1 is associated with manufacturing, amounting to over $100,000 of the total.  The largest factor earnings (i.e., the highest row total) are for land in region 2, which takes in $753,000; this is not surprisingly the region that specializes in agriculture.  Total income in region 1 is $183,600, the sum of the first 3 row sums.

Now assume that the third factor corresponds to water pollution instead of land inputs and that the discharge of a unit of pollutant is taxed at different rates in the different regions.  Then we see that total world taxes amount to $763,500 (the sum of row-sums 3, 6 and 9), most of which are paid by region 2, while these discharges are either insignificant in quantity, or not taxed, in region 3.  Most of the tax is paid by consumers of agricultural goods, mainly the large number of them in region 2.

Each column total of ΦW measures the outlays for all factors associated with the consumption of a particular good in a given region, and the sum of all column totals for a given region is the total value of consumption outlays, piTyi.  Thus consumption of agricultural goods in region 1 amounts to $203,000 (column sum 1), most of which goes to pay land owners in region 2 ($126,000) and workers in region 2 ($50,000).  

The sum of all row totals for a given region is the total factor income, or the (supply-side) GDP for that region.   The sum of all column totals for each region is the value of total consumption outlays.  The latter differs from the former by the value of net exports.  For example, region 1 has total factor earnings of $184,000 but needs to lay out $475,000 for consumption; this deficit is explained by the fact that it is a net importer, and the value of its trade deficit accounts for the difference.  By contrast region 2 is a net exporter.  Its factor earnings are $1,053,000, but its outlays for consumption are only $309,700, with its trade surplus accounting for the difference. 

Finally, we return to the question of the factor resources required by inter-regional transport of traded goods and reallocate these factors to the imported goods.  
Reallocation of Transport to Final Demand for Goods
We wish to reallocate the factors associated in each region with the international transport of its imports to the final demand in the same and other regions where those imports are absorbed.  To do this, the information needed, and its sources, are as follows:

(a) The amounts of factors to be reallocated: in the column of Φ for each region corresponding to the transportation sector(s).  

(b) The proportion of each region’s transport demand (in ton-km) associated with the import of each good: obtained from Tijeij.  The factors are allocated among imports in these proportions.
(c) The proportions among components of final demand, by region and by sector, where each region’s imports end up, which is the same as where each region’s total domestic supply, z (output plus imports), ends up: obtained from the rows of Bz.  The factors associated with each import are allocated to final demand in these proportions.

See the appendix for a more detailed description of the algorithm.  The process may need to be iterated but is assured to converge.  In the 3-region example, this yields (after 2 iterations) the matrix we call B(R, to be compared with B(:
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6.  The Absorbing Markov Chain Approach Compared to the “Big A” Approach

As shown in Section 3, the upstream and downstream chains in the one-region case can be determined using either the standard input-output approach or the absorbing Markov chain approach.  In fact, the same is true in the case of the multiregional world economy, for which the absorbing Markov chain approach was described in Sections 4 and 5.  Here we describe the standard input-output approach to the multiregional problem.

Following the input-output notation of Section 3, the solution to the 3-region, 3-factor, 4-good problem could be written as  Φ = F(I – Å)-1 
[image: image136.wmf]y
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, where 
[image: image137.wmf]y

ˆ

 is the 12 x 12 diagonal matrix of final demand for the 3 regions, F is the 9 x 12 block-diagonal matrix with all regions’ F matrices (each of dimension 3 x 4) arranged down the diagonal, and  
[image: image138.wmf]A

, which we will call the Big A matrix, is defined as follows:
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(6-1)

In the Big A matrix, each region’s A matrix, Ai, is divided column-wise into 3 parts, one corresponding to domestically supplied inputs per unit of its output (Aii) and the others to imports from each other region, j, per unit of region i’s output (Aji).  Thus, taking region 1 as an example, A1 = A11 + A21 + A31.  It is readily seen that the Big A matrix satisfies the Hawkins-Simon conditions for an acceptable input-output matrix if the matrices Ai do.  This Big A matrix has become familiar because the multiregional input-output model used by regional economists generally takes the following form (see, for example, (Peters and Hertwich forthcoming)):
  

(I – 
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which can be solved for x, given y (here defined as final demand for only those goods produced and consumed in a region) and the vectors of exports to final demand in other regions, ei.  Using the matrices F, Aij, and 
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, Φ can be calculated from Eq. (3-1).  Thus we have 2 expressions for Φ: Eq. (6-3) shows the comparable Big A and path-based expressions, and Eqs. (6-4) and (6-5) develop them to highlight the similarities and differences.  In Eq. (6-3) and (6-5), 
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Formulating the problem in terms of the Big A matrix has the advantage that manipulating the Big A matrix is already familiar to regional input-output economists: it is handled like a one-region input-output matrix, and its Leontief inverse is computed.  The properties of the Leontief inverse are sufficiently attractive that analysts are inclined to put all extensions to the basic static input-output model in the form of Eq. (3-1a).   Eq. (6-2) is a multi-regional model written in that form, and the dynamic input-output model and the model closed for households have also been written and solved in a Big A form, among other formulations (but naturally with a different Big A matrix), for this reason.  From a practical point of view, statistical offices have begun to publish the breakdown of a country’s input-output table into a domestic input-output table and an import table -- although the latter are not now further broken down to distinguish individual country origins of imports – in response to the demand of analysts. 

However, the solution by the Big A method of Eq. (6-4) has several drawbacks.  First, the numerous off-diagonal components of the Big A matrix are not available in published data.  Even when a regionally-aggregated import matrix is available, it does not contribute additional information content over the smaller quantity of data required for the Markov method, as import matrices are generally derived on the assumption that the domestic and import shares for a given good are the same in all uses of that good.  That is, Aij = 
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 shows the share of all imports to region i from region j.  There are many categories of data that analysts would like from statistical offices, but arguably better Aij matrices for benchmark years based on the collection of more detailed data – and final demand vectors distinguishing domestically produced from imported goods - should not be accorded high priority.  While A matrices are a good choice of parameters because they change slowly and in ways that can be understood in terms of technological change, this is not the case for Aij matrices where a producer’s choice between a domestically produced input and its similarly-priced imported counterpart, or between an import of a particular good from one region rather than another region at similar prices is circumstantial and volatile.  By contrast, the off-diagonal blocks in the path-based approach are diagonal matrices with exports as a share of domestic supply down the diagonal.
A second drawback of the Big A approach is conceptual.  It is natural, and generally effective, to approach new research problems by making use of concepts and techniques that worked well for related problems in the past; this is the reason the Leontief inverse and its constituent multipliers are put in the service of new problems.  However, this practice also has the effect of slowing the adoption of new approaches able to address a broader set of questions by generalizing existing concepts and methods.  Duchin and Steenge (2007) provide a critique of the Big A strategy.   The path-based approach set out to follow the physical flows rather than to derive an extended Leontief inverse.
The analysis in Sections 4 and 5 provides a method to quantify the factors (and emissions) embodied in a region’s consumption, taking full account of its imports, both direct and indirect, and their transport.  Resources used in transporting imports are reallocated to the imported goods.  The T matrices required to internalize these inputs do not fit into a Big A matrix because they are multiplied not by an output vector but by a region’s imports from each distinct origin.  Distinguishing the transport associated with trade flows requires a more general representation.
Finally, the absorbing Markov chain analysis offers additional information about the input-output problem that is not available using standard input-output methods, that has not been exploited in the present paper.  In particular, the N matrix, derived from the canonical Markov matrix, measures the number of times a node is visited.  This property is used by Yamada et al. (2006) and Matsuno et al. (2007) to examine the paths of recycled a material through an economy and count the average number of times it is recycled before ending up in a landfill.   Similarly, it was utilized by Levine (1980) to derive a measure of trophic position within an ecosystem. The approach can profitably be generalized to a global analysis such as that reported here.  
The Big A method has the advantage of familiarity among input-output analysts, by contrast with the absorbing Markov chain analysis proposed in the paper.  Our claim is that the 2 approaches are complementary, enjoying areas of overlap where they provide results that are identical, and areas of non-overlap where the Markov results require minimal information to answer familiar questions and provide consistent answers to a larger set of emerging questions.  The basic logic of the Markov approach is natural and intuitive, as illustrated by the diagrams of physical flows shown in Figures 3.1, 4.1, and 4.2.  The defining characteristic of the method is to associate each flow of a factor or good with a set of shares adding to 1.0 that indicate the destination (or origin in the case of pollution) of that flow.  Once this simple logic is internalized, the mathematics of the Markov method is as straightforward as that for manipulating an input-output model.  However, both the Big A method and the Markov chain analysis described in this paper are ex-post approaches to analyzing historical data or data generated by a world model; neither is a substitute for a model capable of analyzing alternative scenarios.  
7.  Combining the World Trade Model and Markov Chain Analysis

Previous sections have shown how the supply chain and value chain joining individual factors and goods can be tracked through the global economy using a Markov chain analysis.  This section takes a closer look at the nature of data requirements to highlight the fact that neither the Markov Chain Analysis – nor any other type of decomposition analysis – is a substitute for a multiregional model of the world economy.  The reason is related to the asymmetry between description of the past and exploration of scenarios about the future.  This reasoning also demonstrates why the Big A approach to a model of the world economy is not suitable for the analysis of scenarios about the future.
In the case of past years, A, x, and y are in principle known from input-output accounts.  To analyze material inputs (or emissions), F needs to be constructed, and then factor requirements, or emissions, can be determined as ( = Fx.  This is a familiar task since the F matrix includes labor coefficients, energy coefficients, or carbon coefficients that are frequently used in input-output analysis.  If the analysis is to take place in physical units, unit prices for goods, p, and factors, π, are needed.  Vectors (but not matrices) of bilateral trade flows among all pairs of regions are also available, and the assumption is made that for a given good imported to region j from region i, the import-to-domestic-supply ratio for that good is the same for all uses of the good in region j.  Finally the Tij matrices indicating the ton-kilometers per good carried for each pair of trading partners (regions i and j) by each form of transport can be estimated.  While not all the foregoing data are now provided by statistical offices, requiring the compilation of some supplementary data, it is clear that these are the minimal data requirements for the task at hand.  There is no way to track consumption in one region to the carbon emitted or iron ore extracted in other regions with less information.
Next the question arises as to whether, assuming these data are available for a past year, the Markov framework, or the Big A method, can be used to analyze scenarios about the future.  Scenarios might involve changes in input structures in the A and F matrices, in final demand, in trade flows, or in factor prices.  The answer is that the absorbing Markov chain is not able to determine the effects of these changes because the computations it requires make use of matrices that, being based on row percentages, are not good choices of parameters.  A case in point is the matrix (ij/∑(i which distributes the ith factor among its direct uses in all sectors in a given region.  Thus the row for iron ore, or labor, specifies the portion of the total amount of that factor used which is allocated to each individual industry, such that the total of all portions is 1.0.  This matrix is meaningful as a description of what has happened in the past, but it is subject to substantial changes from one scenario to the next, as output of different goods grows or falls.  Since the nature of the changes is not readily foreseeable, it is not practical to project the changes in the distribution matrix that would be compatible with the other assumptions of particular scenarios.  The Markov approach described in this paper is not a substitute for a model using an appropriate set of parameters but is intended to be used in conjunction with such a model.  Once the model solution has been obtained, all flows are known and the Markov method for tracking the supply and value chains can be applied just as in the case of data about the past.

There are many examples of parameters that work well for revealing underlying properties of data for the past but are not a good choice of parameter for scenarios about the future.  The obvious example is provided by the Big A multiregional matrix of Eq. (6-1) and its use in a multiregional model of Eq. (6-2), which divides a region’s A matrix into the domestically-provided portion and the portion that is imported, A = Ad + Am, where the import matrix may be further distinguished by region of the origin of imports.  The latter matrices are not useful parameters for making projections about the future for the reasons described in Section 6.  It merits emphasizing that the input-output matrices, A and F, are sound choices of parameters because the mix and amount of inputs per unit of a particular output in a given economy change slowly and in ways that are predictable based on a familiarity with the nature of technological change in that sector.  The power of input-output models relies on the definition of the technical coefficients that serve as its parameters.
These examples highlight the differential attributes of parameters in order to make the distinction between an ex-post analysis, such as that carried out in this paper, and a model for analyzing scenarios about the future.  The absorbing Markov chain analysis is an ex-post analysis, in that it requires knowledge of the levels of all variables, and these values need to be consistent.  Their consistency is assured if they refer to the past, which is assumed to be known, or if they are results obtained with a model that imposes consistency constraints.  In order to analyze the supply and value chains for experimental scenarios, in particular scenarios about the future, one needs a model that can project values for the variables that are consistent with the parameters and with each other.  

The motivation for this paper was to couple an ex-post analysis of consumption using absorbing Markov chains with a multiregional model of the global economy that generated the data for analysis.  For this purpose we used the World Trade Model with Bilateral Trade or WTMBT (Strømman and Duchin 2006).  The parameters for that model are the A and F matrices (including one or more international transport sectors), that is, the cost structures in each region, and the matrices Tij describing distances from region i to the j other regions by the different interregional transport modes and the unit mass of each good so carried.  Exogenous variables are the vectors f of factor endowments, y of final demand, and π of factor prices.  On the basis of these, the model projects output, bilateral trade flows, factor use, goods prices, and scarcity rents, r, on fully utilized factors.  All of the exogenous and endogenous information associated with the model’s inputs and outputs is used in the Markov analysis.  A scenario for the WTMBT could specify changes in parameters or exogenous variables and will result in consistent values for all endogenous variables.  Thus one could analyze several different scenarios with the WTMBT and then conduct the Markov analysis of consumption for each.  Obviously other methods can be used to project these variables, but if one wishes to incorporate the logic of comparative advantage in comparing cost structures in potential trading partners, this is the simplest option both conceptually and in terms of its data requirements.
8.  Concluding Remarks
The motivation for this paper was to calculate the carbon embodied in the consumption bill of goods in a particular economy that participates in the global economy.  We generalized the problem to determining the distribution of all factors and pollutant emissions among all components of global final deliveries in the case of m regions, n sectors, and k factors or pollutants.  We displayed the matrix that can both answer this question and also determine the associated sources and destinations of income flows.  That matrix is derived by treating the world economy as an absorbing Markov chain.  A numerical example is provided, making use of an input-output database.
Markov chain analysis is a well-established area of applied mathematics with its own concepts and notations.  We implemented a Markov analysis by reconceptualizing it in terms of variables and parameters that are familiar to input-output economists.  
We call the Big A method the standard approach to the kind of problem addressed here and compare it to the Markov approach which is path-based.  The Markov approach requires less data, organized in a more compact database, and provides results, besides those emphasized in this paper, which cannot be obtained using standard input-output manipulations.  The combination of input-output models with path-based, ex-post analysis opens up new avenues of exploration that remain to be exploited.  One example is of such an analysis is tracking the reuse of goods and the recycling of materials throughout the global economy.
Path-based analysis is not a substitute for an input-output model that generates the paths to be analyzed.  The reason is that the parameters required by Markov chains, like those of the Big A method, are volatile in ways that are not readily projected.  Parameters for the Markov analysis describe each input in terms of the proportion of it allocated to each output to which it contributes directly.  This contrasts with the typical input-output parameters, which describe all input requirement per unit of a given output.  In terms that are intuitive (but not quite precise), the contrast is between row proportions and column coefficients.  
This analysis was developed for use with a particular multiregional model, the World Trade Model with Bilateral Trade (WTMBT).  The Markov analysis both requires, and makes use of, the entire WTMBT database and its solutions for alternative scenarios about the future.  It can, of course, also be used with data from other sources.

References

Bailey, R., J. K. Allen, and B. Bras, 2004a. “Applying Ecological Input-Output Flow Analysis to Material Flows in Industrial Systems, Part I: Tracing Flows,” Journal of Industrial Ecology 8(1-2):45-68.
Bailey, R., B. Bras, and J. K. Allen, 2004b. “Applying Ecological Input-Output Flow Analysis to Material Flows in Industrial Systems, Part II: Flow Metricss,” Journal of Industrial Ecology 8(1-2):69-91..

Barber, M.C., 1978. “A Markovian Model for Ecosystem Flow Analysis,” Ecological Modelling, 5: 193-206. 
Defourny, J. and Thorbecke, E., 1984. “Structural Path Analysis and Multiplier Decomposition within a Social Accounting Matrix Framework,” The Economic Journal, 94: 111-136.
Duchin, F. and A. E. Steenge, 2007. “Mathematical Models in Input-Output Economics,” To appear in Encyclopedia of Life Support Systems (EOLSS): Mathematical Sciences.  http://econpapers.repec.org/paper/rpirpiwpe/0703.htm
Kemeny, J. and J. Snell, 1976. Finite Markov Chains, New York: Springer-Verlag.
Khan, H. and E. Thorbecke, 1989. “Macroeconomic Effects of Technology Choice: Multiplier and Structural Path Analysis within a SAM Framework,” Journal of Policy Modeling, 11(1): 131-156.


Lenzen M, 2007 in press. “Structural Path Analysis of Ecosystem Networks,” in: Suh, S., Handbook on Input-Output Economics for Industrial Ecology.
Lenzen, M., L.L. Pade, and J. Munksgaard, 2004. “CO 2 Multipliers in Multi-Region Input-Output Models,” Economic Systems Research, 16(4): 391-412.

Levine, S. H. 1980. “Several Measures of Trophic Structure Applicable to Complex Food Webs,” Journal of Theoretical Biology, 83: 195-207.
Matsuno, Y., I. Daigo, and Y. Adachi, 2007. “Application of Markov Chain Model to Calculate the Average Number of Times of Use of a Material in Society (Part 2: Case Study for Steel),” International Journal of Life Cycle Assessment, 12(1):34-39.
Patten, B. C. and J. T. Finn. 1979. “Systems Approach to Continental Shelf Ecosystems,” in: Halfon, E., Theoretical Systems Ecology, New York: Academic Press. 183-212.
Peters, G. and E. Hertwich, forthcoming.  “The Application of Multi-Regional Input-Output Analysis to Industrial Ecology,” 
 Peters, G. and Hertwich, E., 2006. “Structural Analysis of International Trade:

 Environmental Impacts of Norway. Economic Systems Research, 18 (2): 155–181.
Sonis, M. and G. Hewings, 1998. “Economic Complexity as Network Complication: Multiregional Input-Output Structural Path Analysis,” Annals of Regional Science, 32(3): 407-436.
Strømman, A. and F. Duchin. 2006.  “A World Trade Model with Bilateral Trade Based on Comparative Advantage.” Economic Systems Research, 18(3): 281-297.

Yamada, H., D. Ichiro, M. Yasunari, A. Yoshihiro, and Y. Kondo, 2006. “Application of Markov Chain Model to Calculate the Average Number of Times of Use of a Material in Society (Part 1: Methodology Development),” International Journal of Life Cycle Assessment, 11(5): 354-360. 

Appendix to Section 5: Reallocation Procedure for Bφ
Bφ is a 9 x 12 matrix of total (i.e., direct plus indirect) proportional flows from factors to final demand. The nine rows correspond to the three factors in each of the three regions. The 12 columns correspond to the proportions of factors embodied in the final demand for output of each of the four sectors in each of the three regions. The fourth, eighth, and twelfth columns correspond to the factors embodied in inter-regional transport for regions 1, 2, and 3, respectively. We wish to reallocate these transport values to the other nine columns in appropriate proportions.  In doing so we will make use of the four-element summation vector s and the vector d for selecting the fourth element:
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We begin by partitioning Bφ into three (9 x 4) matrices,
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 corresponds to the four sectors in region g, and the fourth column of each corresponds to the values being reallocated. These vectors can be computed as 
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From the inter-regional transport matrices, Thg, and the import vectors, ehg, we determine the 4 x 4 inter-regional matrices of transport requirements for each region,
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Computing dTTg we obtain a (1 x 4) vector corresponding to the fourth row of Tg. Normalizing this vector to dTTg(dTTgs)-1 for g = 1, 2, 3, yields the proportional breakdown of the imports of region g.  The 9 x 4 matrix  

Dg = 
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provides a breakdown for reallocating the nine factors embodied in these imports of region g from the 3 goods-producing sectors. 

Bz is the 12 x 12 matrix of total (i.e., direct plus indirect) proportional flows from total domestic supply to final demand.  We partition this as
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where Bzg, a 4 x 12 matrix, corresponds to domestic supply in region g.  The imports we are reallocating are part of this domestic supply and are distributed among the components of final demand in the same proportions as total domestic supply.  Therefore, once we determine the 9 x 12 matrices





Γg = DgBzg, g = 1, 2, 3,

we have the correct pattern of reallocations. 

The final step is to apply the reallocation matrices to the original Bφ after setting the 4th, 8th, and 12th columns to zero. We can do this latter operation by generating the 12 x 12 diagonal matrix H, where





h(i,j) = 1, i = j, i ≠ 4, 8, 12;





         = 0 otherwise.

The reallocated matrix is
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We can express this algorithm in a more compact form.  Beginning with 
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We define Wg = ddT
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In general this procedure will need to be applied iteratively to drive the values in the specified columns to near zero. This is because the reallocation scheme distributes a small proportion of the factors associated with transport back into transport. Operationally this requires that we substitute BφR back into the procedure in place of the original Bφ and repeat the process as many times as deemed necessary; it will converge because the factors attributed to transport decrease in each round.  Mathematically, we can perform n iterations by computing





BφR = Bφ(H + W)n.
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